
Software Engineering

and Architecture

Broker I Mandatory:

First Steps on Distributed HotStone

Don’t Panic

• I will introduce the Broker I mandatory

• … but it is not this week’s hand-in ☺

CS@AU Henrik Bærbak Christensen 2

Some Experiences

• HotStone is not difficult to ‘go distributed’, but ..

– It was not designed with distribution in mind

• But the ‘Facade’ pattern nature of Game is actually ideal

– It contains an Observer pattern, however!

• Which our Broker does specifically not support !

– There are a lot of methods

• Means a lot of ‘if (operationName.equals(xxx))’

– It is multi-class and multi-object

• Game, Card, Hero, Player, …

– It is a non-trivial code base

• Abstract Factory, Xstrategy, ...

CS@AU Henrik Bærbak Christensen 3

Double Leap

• Making HotStone distributed is not hard...

– ... Once you know the details in Broker

• I solved the ‘hard parts’ in a couple of hours coding time

• Disclaimer – I probably know Broker pretty well by now after having

written the book and fumbled my way through it for a couple of years

in a couple of projects...

• ... But getting into the process of using Broker is hard!

• We will split the work into two mandatory deliveries:

CS@AU Henrik Bærbak Christensen 4

Broker I

• Learning Goal

– Getting into the Broker pattern’s roles and implementation

– Develop all methods that are not handling object references

– Reinforced learning of using test doubles to avoid big bang

integration

• Product Goal

– JUnit Test suite, TDD developing ClientProxies and Invoker code

– Integration testing, using HTTP based communication

CS@AU Henrik Bærbak Christensen 5

Broker II

• Learning Goal

– Get the handle object reference methods implemented

• c = getCardInHand(…), playCard(.., c), and cousins...

– System test: MiniDraw GUI integrated in a full client

– Optional Refactor Invoker “Blob” into Multi Type Dispatching

• Product Goal

– JUnit test suite that cover all broker related code

– System testing of a full HotStone GUI based product!

CS@AU Henrik Bærbak Christensen 6

Final HotStone System

CS@AU Henrik Bærbak Christensen 7

Broker I Exercise

Exercises

• Broker 1.1

– Develop much of Game’s methods

• All those that handle simple values / no object references

• Broker 1.2

– Develop Card and Hero methods (are all simple values)

• Broker 1.3

– Make a real manual integration test case using a real

HotStoneGameServer – involving a client and a server

CS@AU Henrik Bærbak Christensen 9

Limitations

... To lower your effort ...

You will only...

• ... Handle a single game on the server

– Only one GameServant object

• Thus its object id is irrelevant and no need to keep a datastructure of

multiple servant objects

• Just like the TeleMed system

– Known as the Singleton design pattern

• One, globally, accessible object, only one exists…

• [Some consider this an anti-pattern, but…]

CS@AU Henrik Bærbak Christensen 11

Broker 1.1

Pass by Value Game methods

Pass by Value Methods

• Broker 1.1: Develop all pass by value methods of Game

CS@AU Henrik Bærbak Christensen 13

What to implement?

• Broker roles

– Most are reused!

• Use the JSON

marshalling (Gson)

• Use the HTTP IPC

• Use Doubles/Your Game

• Missing are

– ClientProxies

– Invoker(s)

CS@AU Henrik Bærbak Christensen 14

Staring at the Screen

• How the h... do you start this exercise?

– I stared at the screen with a very blank expression for 10 minutes

• The starting point is to establish the full broker chain of

roles...

– (So the template code provides it for

Game, make your own for Card and

Hero.)

– hotstone.broker.TestGameBroker

CS@AU Henrik Bærbak Christensen 15

• Make the @BeforeEach method that sets up the chain /

dependency inject roles

• Example:

So, First thing to do is...

CS@AU Henrik Bærbak Christensen 16

Use Doubles ?

• Use a Fake Object Game or a special stub game

– Create/reuse a Test fake object for the game

– Or a simple

AlphaStone ?

CS@AU Henrik Bærbak Christensen 17

Do it without IPC

• Take small steps and Keep Focus!

– TDD the ClientProxy + Invoker code first

– Go IPC/distribution next...

CS@AU Henrik Bærbak Christensen 18

Use Doubles

• If you develop the Broker code using your full HotStone

Game as Servant object...

• …You may run into big bang integration problems...

– You have a bug, debug for hours in your ClientProxy and Invoker,

only to discover the bug is in some weird strategy in the HotStone

code base 

• Counterpoint

– Your current AlphaStone should be pretty ‘battle hardened’…

CS@AU Henrik Bærbak Christensen 19

Use Doubles

• Broker code is ‘mechanical transport of data’ and thus no

real game behavior is important for testing the broker

implementation!

– Different from the MiniDraw exercise – there it was important to

visually test the UI

• Thus use a test double with weird data if you can…

– Turn number = 312

• Broker can transport any value, and by using ‘weird’ values you are

certain you talk to a test stub ☺

CS@AU Henrik Bærbak Christensen 20

Go depth first...

• I advice to TDD the code depth-first

– Breath-first = make all ClientProxy methods first, next all invoker

– Depth-first = make one ClientProxy method and drive all code

into existence, that is the Invoker, until the test case pass

• That is,

– Step 1: Quickly add a Test

CS@AU Henrik Bærbak Christensen 21

The Test Stub

• Step 1: Quickly add a Test

– Purpose: Develop the ClientProxy and the Invoker code

– But the Servant must of course return turn number 312

• Make the stub output

easily recognizable output

– If every method returns 0,

it is difficult to see if you

call the right one…

CS@AU Henrik Bærbak Christensen 22

Go depth first...

• Step 2: See test fails... Yeah!!!

• Step 3: Make a little change...

– Find inspiration in the TeleMed code and make the first method of

the first abstraction in the call chain work –

– the GameClientProxy’s getTurnNumber() method...

• Send the method request to the server, using the Requestor’s

sendRequestAndAwaitReply() method…

CS@AU Henrik Bærbak Christensen 23

Inspiration

• Something inspired by the TeleMedProxy code

CS@AU Henrik Bærbak Christensen 24

First client proxy method

• Inspired by looking at TeleMed code I write my first

attempt at a ClientProxy implementation

• OK, two issues

– What objectId to use?

– What operation name to use?

CS@AU Henrik Bærbak Christensen 25

objectId Issue

• The objectId???

• Answer:

– Single game

on server

• Exercise:

– What is the

objectId

CS@AU Henrik Bærbak Christensen 26

And Operation Name

• A mangled string, uniquely identifying the method on both

client and server side

– I have provided a class ‘OperationNames’ with all the strings.

CS@AU Henrik Bærbak Christensen 27

Print Stuff Now, Remove Later!

• I print stuff to know ‘where am I’ and I can trace the call

chain, inspect JSON request and replies…

• Remove System.out again, once all test cases pass!

– Or you when the output is no longer useful. Clean code!

CS@AU Henrik Bærbak Christensen 28

Scaffolding code ☺.
Small steps!

TDD Step 2 or 4?

• Step 2: See it fail or Step 4: See it pass???

• The printout tells me that I have

– Proxy at step 4: It works!

• The RequestObject looks OK

– Invoker at step 2: No code yet!

CS@AU Henrik Bærbak Christensen 29

Step 3, part 2

• Step 3: Make a little change...

– make the next method of the first abstraction in the call chain

work –

– the GameInvoker’s handleRequest’s first switch on method

name...

CS@AU Henrik Bærbak Christensen 30

Inspiration

• From TeleMed’s

Invoker code

• Copy a bit, change

equals(..) to the

right OpName…

CS@AU Henrik Bærbak Christensen 31

Step 4

• A bit of Invoker coding later …

– Test pass

– Output looks OK – proper RequestObject and ReplyObject

• Conclusion

– One method of Game is now correctly work through the chain

– All required classes are in place...

– Depth-first! Repeat until all pass-by-value methods in place…

CS@AU Henrik Bærbak Christensen 32

Steal with Pride!

• It is a learning process, this one...

– Learn from TeleMed.

– Have the code handy for reference ...

CS@AU Henrik Bærbak Christensen 33

Pass by Value

• Broker 1.1: Develop all pass by value methods of Game

• Huh? Player???

• That is an enum which is actually a class, right?

CS@AU Henrik Bærbak Christensen 34

Enums are Values

• Enums are in Java implemented as classes but represent

values!

• Just pass them as values, that is, use Gson to marshall

and demarshall

– Gson handles it as you would expect

CS@AU Henrik Bærbak Christensen 35

Observer

• A pure client-server architecture cannot implement

Observer as outlined previously

– Would involve the server calling the client Not permitted

• What then about that aspect of Game?

• Exercise:

– In the ClientProxy, what is the

observer’s responsibility?

– And what implications does that have for the client-server

relation?

CS@AU Henrik Bærbak Christensen 36

Error Handling

• SWEA sticks to the ‘happy path’, so not required …

• However, a bit of error handling is nice (optional)

– FRDS.Broker library does support transporting exceptions over

the network (sort of).

– Study the TeleMed code ☺ (page 46)

• Handles ‘unknown method’

• Handles ‘exception on the server’

– If the requestor receives a Reply with

errorcode >= 300, it will

throw an exception in the client…

CS@AU Henrik Bærbak Christensen 37

Broker 1.2

Hero and Card

Broker Pattern

• There is a ‘chain’ for each Role!

• Card role

– CardClientProxy

• Hero role

– HeroClientProxy

• What about Invoker?

– One big invoker?

– Invoker for each role?

CS@AU Henrik Bærbak Christensen 39

Broker 1.2

• We will make a stepping stone approach in this

exercise…

– Just like in the GameLobby system in the FRDS book, we will

make one big invoker (a ‘blob’ invoker).

– That is: there is only one invoker, and it handles method dispatch

for Game and Card and Hero

• This is “Make horrible sins and clean up later”

– (If you make it clean from the start (= separate invokers for each

type) you will run into problems in Broker II exercises )

CS@AU Henrik Bærbak Christensen 40

Hero and Card

• These interfaces’ methods all have value type return

values

– So, you can develop them! And you are asked to...

• Process – similar as for game… Take small steps…

– Make a TestHeroBroker test class

– Make the broker chain as I did in @BeforeEach for Game

– Implement one method depth-first

• HeroClientProxy – then update the associated dispatch in Invoker

– Repeat until done

CS@AU Henrik Bærbak Christensen 41

Example Hero

• Ala a @BeforeEach like

– The ‘blob’ invoker

– A Hero specific

ClientProxy

CS@AU Henrik Bærbak Christensen 42

Strings as Value Type

• What about String type? It is a Java class, not a primitive

type .

• Treat String as a value type.

– We need the characters “Siete”, not a memory reference to that

string.

• Again, Gson will handle it.

CS@AU Henrik Bærbak Christensen 43

Hero and Card

• The key obstacle, however, is: What is the objectId?

– Which is the core learning goal of Broker Exercise II, next week

• For now Fake it till you make it... Scaffolding !

– Use a ‘fake id’ in the client proxy

– And…

CS@AU Henrik Bærbak Christensen 44

Fake Id in Invoker

• Card is not a

Singleton, there

are many of them!

CS@AU Henrik Bærbak Christensen 45

Method encapsulates the
lookup. Presently it is fake-it
code, but next week can be

recoded to proper impl.

One Level of Abstraction – uncle bob

Sidebar Exercise

• Why not pass Card as a value type?

– It is just dumb data, right?

– Gson can marshall and demarshall it properly, right?

• Argue in favor of pass-by-reference and pass-by-value

• In the exercise, you must implement the ClientProxy

+ Invoker pairs for both Card and Hero

– Which is ‘pass-by-reference’…

CS@AU Henrik Bærbak Christensen 46

Cost of the FakeIt code

• Next week, you will actually have to modify your Invoker

quite a bit – split them, replace fake-it lookup…

– Take small steps, sometimes goes via code that needs to be

removed again once we get to the

final stages of the development.

– Scaffolding is common in

other engineering disciplines ☺

CS@AU Henrik Bærbak Christensen 47

Broker 1.3

The Client and Server programs

Manual integration test

The Main Methods

• TDD and Doubles will get all the core code in place.

• Still, we need applications to run a distributed system

– HotStoneServer’s main method

– HotStoneClient’s main method

• Provided code provides both

CS@AU Henrik Bærbak Christensen 49

Manual Integration Test

• We can build a proper server setup already this week!

• Why?

– There is only one Servant game

• Create ‘servant’

• Couple the invoker to it

• Couple a UriTunnelSRH to it

– Listen to HTTP requests from client

• And then we are done…

– (Change the servant to your code!)

– (The servant is not complete, but

will be next week.)

CS@AU Henrik Bærbak Christensen 50

Manual Integration Test

• But we cannot build a full-blown client

• Why?

– Game only partially done 

– The Hero and Card Invokers are

not coupled to the Game Invoker

– Thus a MiniDraw GUI will fail !

• But, we can test the simple

Game methods

• A manual integration test

– Call a few simple Game methods over real HTTP network

• And verify that server receives them and returns proper results…

CS@AU Henrik Bærbak Christensen 51

Server Side

• Start server using Gradle

• Or in IntelliJ

CS@AU Henrik Bærbak Christensen 52

Server Running…

• The server uses a Logging framework (SLF4J) to provide

server side info – a life saver in case of trouble…

• (Controlled by the ‘log4j.properties’ file in the

src/main/resources folder, outside the scope of exercise)

CS@AU Henrik Bærbak Christensen 53

Client Side

• Start Client story test using Gradle

• This ‘main()’ method needs 1 argument: which server to

contact?

CS@AU Henrik Bærbak Christensen 54

Client Side

• From IntelliJ, you also need to give that parameter

CS@AU Henrik Bærbak Christensen 55

Client Code

• Passing host parameter to the main method…

CS@AU Henrik Bærbak Christensen 56

Manual Test method

• Let the client just exercise a scenario/remote calls

CS@AU Henrik Bærbak Christensen 57

Summary

• Development Patterns for Iteration 9+10

• Setup the Broker Chain first

• Use Test Doubles for Game and IPC

• Print now and remove later
– Print to System.out to trace flow, remove when shit works

• Develop each method depth-first
– Make proxy method for method x, see proper output from print, next

iteration make invoker code, done…

CS@AU Henrik Bærbak Christensen 58

Conclusion...

Happy Coding!

