/v

AARHUS UNIVERSITET

Software Engineering
and Architecture

Broker | Mandatory:
First Steps on Distributed HotStone

\ 4
AARHUS UNIVERSITET

Don’t Panic

* | will introduce the Broker | mandatory
« ... butitis not this week’s hand-in ©

SWEA Mandatory Delivery Plan

Week No

Autumn Vacation

N o B W N O

10
11
12
13
14

CS@AU

Calendar Week

SWEA Lectures Mandatory
34
35 TDD (Iteration 0 / IDE) No hand-in
36 SCM + Build lteration1/TDDI
37 Strategy iteration 2 / TDD Il + Git
38 Code Quality + State Iteration 3 / Strategy
39 Test Double/Abs Factory iteration 4 / Code Qual + State
40 ISP/Spy + Roles/Comp Princip Iteration 5 / Test Stub + Abs Fact
41 Pattern Catalogue Iteration 6 / Comp design + Test Spy
42
43 Sys testing / coverage
44 MiniDraw / Frameworks Iteration 7 / BB | + Observer + 2x pattern
45 Networking / Broker | iteration 8 / MiniDraw
46 Broker Mandatory / Broker I
47 Broker Il Mandatory/ HTTP REST iteration 9 / Broker 1 +BB Il
48 Containers / Energy / Eval Iteration 10 / Broker Il

49 Concurrency + Exam Hints

Henrik Baerbak Christensen 2

/v Some Experiences

AARHUS UNIVERSITET

« HotStone is not difficult to ‘go distributed’, but ..
— It was not designed with distribution in mind
« But the ‘Facade’ pattern nature of Game is actually ideal
— It contains an Observer pattern, however!
« Which our Broker does specifically not support !
— There are a lot of methods
* Means a lot of ‘if (operationName.equals(xxx))’
— It is multi-class and multi-object
« Game, Card, Hero, Player, ...
— It is a non-trivial code base
» Abstract Factory, Xstrategy, ...

/v Double Leap

AARHUS UNIVERSITET
« Making HotStone distributed is not hard...

— ... Once you know the details in Broker
| solved the ‘hard parts’ in a couple of hours coding time

 Disclaimer — | probably know Broker pretty well by now after having
written the book and fumbled my way through it for a couple of years
in a couple of projects...

« ... But getting into the process of using Broker is hard!

« We will split the work into two mandatory deliveries:

/v

AARHUS UNIVERSITET

« Learning Goal
— Getting into the Broker pattern’s roles and implementation

Broker |

— Develop all methods that are not handling object references

— Reinforced learning of using test doubles to avoid big bang
integration

 Product Goal

— JUnit Test suite, TDD developing ClientProxies and Invoker code
— Integration testing, using HTTP based communication

VeV Broker I

AARHUS UNIVERSITET

« Learning Goal

— Get the handle object reference methods implemented
« ¢ = getCardlnHand(...), playCard(.., ¢c), and cousins...

— System test: MiniDraw GUI integrated in a full client

— Optional Refactor Invoker “Blob” into Multi Type Dispatching

 Product Goal
— JUnit test suite that cover all broker related code
— System testing of a full HotStone GUI based product!

S Final HotStone System

AARHUS UNIVERSITET

csdev@small22: -Iprojlhotsto
csdev@small22: ~/proj/hotstone 113x13

Peddersen: Hand (3), Deck (21)

Summon Sovs card. FINDUS drawsia card

Opp. Acts

Henrik Baerbak Christensen

/v

AARHUS UNIVERSITET

Broker | Exercise

/v Exercises

AARHUS UNIVERSITET
* Broker 1.1

— Develop much of Game’s methods
» All those that handle simple values / no object references

int getTurnNumber(); Player getPlayerInTurn();

int getDeckSize(Player who);

« Broker 1.2
— Develop Card and Hero methods (are all simple values)
int gethanaCostOi| . o @ Name(); int getMana();
 Broker 1.3

— Make a real manual integration test case using a real
HotStoneGameServer — involving a client and a server

CS@AU Henrik Baerbak Christensen 9

/v

AARHUS UNIVERSITET

Limitations

... 1o lower your effort ...

/v You will only...

AARHUS UNIVERSITET
* ... Handle a single game on the server

— Only one GameServant object

« Thus its object id is irrelevant and no need to keep a datastructure of
multiple servant objects

* Just like the TeleMed system

— Known as the Singleton design pattern
* One, globally, accessible object, only one exists...
» [Some consider this an anti-pattern, but...]

/v

AARHUS UNIVERSITET

Broker 1.1

Pass by Value Game methods

/v Pass by Value Methods

AARHUS UNIVERSITET
« Broker 1.1: Develop all pass by value methods of Game

int getTurnNumber(); Player getPlayerInTurn();

int getDeckSize(Player who);

CS@AU Henrik Baerbak Christensen 13

/v

AARHUS UNIVERSITET

Broker roles
— Most are reused!

Use the JSON
marshalling (Gson)

Use the HTTP IPC

Use Doubles/Your Game

Missing are
— ClientProxies
— Invoker(s)

CS@AU

What to implement?

«interface»

Role A

Client side

method(a,b,c)

ClientProxy

method(a,b,c)

Requestor

request(location, objectld,
operationld, arguments)

4
‘}34' sends on network

ClientRequestHandler

send(address, byte[])

o IPC
Library

Henrik Baerbak Christensen

/.

Server side

‘ Servant

‘ method(a,b,c)

7

Demarshalls §nd
dispatchs cal

Invoker

o

handleRequest(byte[])

i .
/ receives on network

‘ ServerRequestHandler

‘ byte[] receive() ‘

/ '
IPC 2
Library

14

/v Staring at the Screen

AARHUS UNIVERSITET

 How the h... do you start this exercise?
— | stared at the screen with a very blank expression for 10 minutes

«interface» .

vl Role

method(a,b,c)

— (So the template code provides it for
Game, make your own for Card and
Hero.)

— hotstone.broker. TestGameBroker crenmessensai\

send(address, byte[]) el] ﬁleive()

N ’
~ ra
N .

% IPC IPC |

Library Library

CS@AU Henrik Baerbak Christensen 15

IPC

/v

AARHUS UNIVERSITET

So, First thing to do is...

« Make the @BeforeEach method that sets up the chain /
dependency inject roles

 Example:

CS@AU

P e
10 o+

public void setup() {

Game servant = new StubGameForBroker(); *

Invoker invoker = new HotStoneGameInvoker(servant);

ClientReguestHandler crh = l
new LocalMethodClientRequestHandler(invoker);
Requestor requestor = new StandardJSONReguestor(crh);

game = new GameClientProxy(requestor); /
F

Henrik Baerbak Christensen 16

/v

AARHUS UNIVERSITET

Use Doubles ?

« Use a Fake Object Game or a special stub game
— Create/reuse a Test fake object for the game

— Or a simple
AlphaStone ?

CS@AU

Game servant = new StubGameForBroker();

Invoker invoker = new HotStoneGameInvoker(servant);

ClientRequestHandler crh =
new LocalMethodClientRequestHandler(invoker);
Requestor requestor = new StandardJSONReguestor(crh);

game = new GameClientProxy(requestor);

Henrik Baerbak Christensen 17

eV Do it without IPC

AARHUS UNIVERSITET

« Take small steps and Keep Focus!

— TDD the ClientProxy + Invoker code first
— Go IPC/distribution next...

dBeforeEach
public void setup() {

Game servant = new StubGameForBroker();

Invoker invoker = new HotStoneGameInvoker(servant);

ClientRequestHandler crh =
new LocalMethodClientRequestHandler(invoker);
Requestor requestor = new StandardJSONReguestor(crh);

game = new GameClientProxy(requestor);

}

CS@AU Henrik Baerbak Christensen 18

/v Use Doubles

AARHUS UNIVERSITET

 If you develop the Broker code using your full HotStone
Game as Servant object...

* ...You may run into big bang integration problems...

— You have a bug, debug for hours in your ClientProxy and Invoker,
only to discover the bug is in some weird strategy in the HotStone
code base ®

« Counterpoint
— Your current AlphaStone should be pretty ‘battle hardened'...

VeV Use Doubles

AARHUS UNIVERSITET

* Broker code is ‘mechanical transport of data’ and thus no
real game behavior is important for testing the broker
iImplementation!

— Different from the MiniDraw exercise — there it was important to
visually test the Ul

« Thus use a test double with weird data if you can...

— Turn number = 312

« Broker can transport any value, and by using ‘weird’ values you are
certain you talk to a test stub ©

Y o Go depth first...

AARHUS UNIVERSITET
* | advice to TDD the code depth-first

— Breath-first = make all ClientProxy methods first, next all invoker

— Depth-first = make one ClientProxy method and drive all code
iInto existence, that is the Invoker, until the test case pass

. That s,

public void setup() {

— Step 1: Quickly add a Test S

Game servant = new StubGameForBroker();

Invoker invoker = new HotStoneGameInvoker(servant);

public void shouldHaveTurnNumber312() {

ClientReguestHandler crh =

new LocalMethodClientReguestHandler(invoker);

assertThat(game.getTurnNumber(), is(value: 312}); Reguestor requestor = new StandardJSONRequestor(crh);

} game = new GameClientProxy(reguestor);

CS@AU Henrik Baerbak Christensen 21

VeV The Test Stub

AARHUS UNIVERSITET
« Step 1: Quickly add a Test

— Purpose: Develop the ClientProxy and the Invoker code
— But the Servant must of course return turn number 312

public class StubGameForBroker implements Game, Servant {

[) Make the StUb OUtpUt [Dubllc_lnt getTurnNumber () {]
easily recognizable output """

— If every method returns 0O,
.y s - . vblic Player getPlayerInTurn() {
it is difficult to see if you e,
call the right one... g

public Player getWinnmer() {
return Player.PEDDERSEN;
}

CS@AU Henrik Baerbak Christensen 22

/v Go depth first...

AARHUS UNIVERSITET
o Step 2: See test fails... Yeah!!!

java.lang.AssertionError: e
Expected: 1-5 {312} public GameClientProxy(Requestor equestor) {

but: was <0=>

return 8;

« Step 3: Make a little change... }

— Find inspiration in the TeleMed code and make the first method of
the first abstraction in the call chain work —

— the GameClientProxy’s getTurnNumber() method...

« Send the method request to the server, using the Requestor’s
sendRequestAndAwaitReply() method...

\ 4
AARHUS UNIVERSITET

Inspiration

« Something inspired by the TeleMedProxy code

CS@AU

public class TeleMedProxy implements TeleMed, ClientProxy {

public static final String TELEMED_OBJECTID = "singleton";

private final Reguestor requestor;
public TeleMedProxy(Requestor reguestor) {
this.requestor = requestor;

@0verride \

public String processAndStore(TeleObservation teleObs) {
String vid =
requestor.sendRequestAndAwaitReply(TELEMED_OBJECTID, OperationNames.PROCESS_AND_STORE_OPERATION,
String.class, teleObs);
return uid;

’ Y

erride

public List<TeleObservation> getObservationsFor(String patientId, TimeInterval interwval) {
Type collectionType =
new TypeToken<List<TeleObservation=>(){}.getType();
List<TeleObservation> returnedlList;
try {
returnedList = requestor.sendRequestAndAwaitReply(TELEMED_OBJECTID,
OperationNames.GET_OBSERVATIONS_FOR_OPERATION,
collectionType, patientId, interval);

Henrik Baerbak Christensen

24

eV First client proxy method

AARHUS UNIVERSITET

 Inspired by looking at TeleMed code | write my first
attempt at a ClientProxy implementation

public int getTurnNumber() {
int turnNumber =
requestor.sendRequestAndAwaitReply(objectId,
o GDE“ETiGPhENEFD“GEThL“PhLNbE”,
Integer.class);

return turnNumber;

H

* OK, two issues
— What objectld to use?
— What operation name to use?

CS@AU Henrik Baerbak Christensen 25

/v

AARHUS UNIVERSITET
* The objectld???

objectld Issue

¥ Marshall the given operation and its parameters into a reqguest object, send
it to the remote component, and interpret the answer and convert it back
& Tnt +h raFrrrn Fuon £ nari~ funa T
[A . into The return \._u-'.l.-E o7 QEIIE"J.I_ \._u-'.l.-E |
nSwer. .
i ¥ @param <T> _
— Slngle game : generic type of the return value
¢ @param objectId _
on server f the object that this request relates to; not that this may not
: necessarily just be the object that the method is called upon
¢ @param operationName
the operation (=method) to invoke
¥ @param typeOfReturnValue

H . : the java reflection type of the returned type
* Exercise: - eparan argunent

the arguments to the method call
- What IS the ¢ @greturn the return value of the type giveq

. <> T sendRequestAndAwaitReply(5tring objectId, String operationName,
ObjeCtId Type typeDfReturnValue, Object... argument);

typedfReturnValue

CS@AU Henrik Baerbak Christensen 26

/v And Operation Name

AARHUS UNIVERSITET

« A mangled string, uniquely identifying the method on both
client and server side
— | have provided a class ‘OperationNames’ with all the strings.

hotstone
broker
client
€ GameClientProxy
common
€ OperationNames]

private String singletonlId = "one-game";

public int getTurnNumber() {
int turnNumber = '
requestor.sendRequestAndAwaitReply(singletonId,

ﬂperatiunﬂameﬂ.EAHE_EET_TUHN_NUHBEH,
Integer.class);

return turnNumber;

]-

public static fimal String GAME_GET_TURN_NUMBER = GAME_PREFIX + SEPARATOR + "get-turn-number";

CS@AU Henrik Baerbak Christensen 27

/v Print Stuff Now, Remove Later!

AARHUS UNIVERSITET

| print stuff to know ‘where am |’ and | can trace the call
chain, inspect JSON request and replies...

public class LocalMethodClientRequestHandler implements ClientRegquestHandler {
private final Invoker invoker;

public |LocalHethodClientRequestHandler'{Imroker invoker) {
this.invoker = invoker;

})
public String sendToServerAndAwaitReply(String request) { L J
— System.ovt.printin(" --= "

+ request);
String reply = invoker.handleRequest(reguest);

ﬁ System.ovt.printin(" --< " + reply);

return reply;

F

« Remove System.out again, once all test cases pass!
— Or you when the output is no longer useful. Clean code!

CS@AU Henrik Baerbak Christensen 28

/v TDD Step 2 or 4?

AARHUS UNIVERSITET
« Step 2: See it fail or Step 4: See it pass???

Run: TestGameBroker.shouldHaveTurnNumber312

Py @ 121 T = d Q¥ 2 @ O Tests failed: 1 - 46 ms

9 v TestGameBroker (hotstone.broker) 46ms fusr/1lib/jvm/java-1.17.08-openjdk-amdé4/bin/java ...

o shouldHaveTumNumber312() --> {"operationMame":"game_get-turn-number","payload":"[]", "objectId":"one-game","versionIdentity":1}
y --< null

java.lang.NullPointerException: Cannot invoke "frds.broker.ReplyObject.isSuccess()" because "reply" is null

* The printout tells me that | have

— Proxy at step 4: /{ works!
« The RequestObject looks OK

method(a,b,c) S
--> {"operationName":"game_get-turn-number", "payload":"[]","objectId":"one-game", "versionIdentity":1}

‘ Servant
Domain

method(a,b,c)
7
" Demarshalls and

e dispatchs call

equestor Marshalling Invoker

requesiibcation, objectld, handleRequesjyb
operatidlid, arguments) operationld, bjftg .\
‘.\\ 7 V

/ receives on network

— Invoker at step 2: No code yet!

uestHandler
--< null
byte[] receive()
java.lang.NullPointerException: Cannot invoke "frds.broker.ReplyObject.isSuccess()" because "reply" is null \\‘ ::L—F’//
Library Library

CS@AU Henrik Baerbak Christensen 29

/v Step 3, part 2

AARHUS UNIVERSITET
« Step 3: Make a little change...

— make the next method of the first abstraction in the call chain
work —

— the Gamelnvoker’s handleRequest’s first switch on method
l\iif!](!... dBeforeEach

public void setup() {

public class HotStoneGameInvoker implements Invoker { Game servant = new StubGameForBroker():
- I

1 g Henrik Baerbak @ coffeelake.small2?2 <hbc@cs.au.dk= Invoker invoker new HotStoneGameInvoker(servant);
public HotStoneGameInvoker(Game servant) {
} 3
Sages Henrik Baerbak @ coffeelake.small22 <hbc@cs.au.dk> ClientRequestHandler crh =
:izef'i:e - - new LocalMethodClientRequestHandler (invoker);
[public String handleRequest(String request) { return null; }] Requestor requestor = new StandardJSONReguestor(crh);
T game = new GameClientProxy(reguestor);

I
CS@AU Henrik Baerbak Christensen 30

\ 4
AARHUS UNIVERSITET

* From TeleMed’s
Invoker code

« Copy a bit, change
equals(..) to the
right OpName...

Inspiration

public class TeleMedJSONInvoker implements Invoker {
private final TeleMed teleMed;
private final Gson gson;

public TeleMedJSONInvoker(TeleMed teleMedServant) {
teleMed = teleMedSerwvant;
gson = new Gson();

¥

Averride
public String handleRequest(String request) {

RequestObject requestObject = gson.fromJson(reguest, ReguestObject.class);
JsonArray array = JsonParser.parseString(requestObject.getPayload()).getAsIsonArray();
ReplyObject reply;

public static final String GAME_GET_TURN_NUMBER|,, o) nopuiate a repty object with return valves

CS@AU

if (requestObject.getOperationName().equals(0OperationNames.
PROCESS_AND_STORE_OPERATION)) {

Henrik Baerbak Christensen 31

/v Step 4

AARHUS UNIVERSITET
« Abit of Invoker coding later ...

— Test pass

— Output looks OK — proper RequestObject and ReplyObject

Run: TestGameBroker.shouldHaveTurnNumber312

P v @ 1217 = T Qw12 o + Tests passed: 1 - 45ms
v TestGameBroker (hotstone.broker) 45ms fusr/lib/jvm/java-1.17.0-openjdk-amdé4/bin/java ...

€ad

shouldHaveTumNumber312() --> {"operationName":"game_get-turn-number", "payload":"[]","objectId":"one-game", "versionIdentity":1}

y --< {"payload":"312","statusCode":280, "versionIdentity":1}

« Conclusion

— One method of Game is now correctly work through the chain
— All required classes are in place...

— Depth-first! Repeat until all pass-by-value methods in place...

CS@AU Henrik Baerbak Christensen 32

\ 4
AARHUS UNIVERSITET

Steal with Pri

e

* ltis alearning process, this one...

— Learn from TeleMed.

— Have the code handy for reference ...

public class TeleMedJSONInvoker implements Invoker {
private final TeleMed teleMed;
private final Gson gson;

public TeleMedJSONInvoker(TeleMed teleMedServant) {
teleMed teleMedServant;
gson new Gson();

@0verride
public String handleRequest(String reguest) {

RequestObject requestObject
JsonArray array

gson.fromJson(request, ReguestObject.class);
JsonParser.parseString(requestObject.getPayload()).getAsIsonArray();

ReplyObject reply;

if (requestObject.getOperationName().equals(OperationNames.
PROCESS_AND_STORE_OPERATION)) {

CS@AU

public class TeleMedProxy implements TeleMed, ClientProxy {
public static final String TELEMED_OBJECTID

"singleton";
private final Requestor reguestor;
public TeleMedProxy(Reguestor reguestor) {

this.requestor

reguestor;

A0verride
public String processAndStore(TeleObservation teleObs) {
String uid

requestor.sendRequestAndAwaitReply(TELEMED_OBJECTID, OperationNames.PROCESS_AND_STORE_OPERATION,
String.class, teleObs);
return vid;

i

public List<TeleObservation> getObservationsFor(String patientId, TimeInterval interval) {
Type collectionType

new TypeToken<List<TeleObservation>>(){}.getType();
| List<TeleObservation> returnedList;
try {
returnedList

reguestor.sendRequestAndAwaitReply (TELEMED_OBJECTID,
OperationNames.GET_OBSERVATIONS_FOR_OPERATION,
collectionType, patientId, interwval);

Henrik Baerbak Christensen 33

/v Pass by Value

AARHUS UNIVERSITET
« Broker 1.1: Develop all pass by value methods of Game
int getTurnNumber(); Player getPlayerInTurn();

int getDeckSize(Player who);

. Huh? Player??? /

« That is an enum which is actually a class, right?

CS@AU Henrik Baerbak Christensen 34

/v Enums are Values

AARHUS UNIVERSITET
 Enums are in Java implemented as classes but represent
values! - e
public enum Player { oK, -

FINDUS, PEDDERSEN
F

» Just pass them as values, that is, use Gson to marshall
and demarshall
— Gson handles it as you would expect

Player winner =
requestor.sendRequestAndAwaitReply(singletonId,
OperationNames.GAME_GET_WINNER,
[Player.class); l

CS@AU Henrik Baerbak Christensen 35

/v Observer

AARHUS UNIVERSITET

* A pure client-server architecture cannot implement
Observer as outlined previously
— Would involve the server calling the client Not permitted

* What then about that aspect of Game?

d EXGFCISG' public void addDbserver(GameDbserver observer) {

— In the ClientProxy, what is the
observer’s responsibility?

— And what implications does that have for the client-server
relation?

/v Error Handling

AARHUS UNIVERSITET
« SWEA sticks to the ‘happy path’, so not required ...

« However, a bit of error handling is nice (optional)

— FRDS.Broker library does support transporting exceptions over
the network (sort of).

— Study the TeleMed code © (page 46)
« Handles ‘unknown method’ tuer reoetund ko cperation nane

} else {

+ requestObject getOperationName() + "' .");

» Handles ‘exception on the server’

} eatch(XDSException e) |
reply =
new ReplyObject(

— If the requestor receives a Reply with
errorcode >= 300, it will S
throw an exception in the client... | rotumm geen-toleon(rerly)

HttpServletResponse . SC_INTERMAL_SERVER_ERROR,

/v

AARHUS UNIVERSITET

Broker 1.2

Hero and Card

/v

AARHUS UNIVERSITET
» There is a ‘chain’ for each Role!

« Card role

Broker Pattern

— CardClientProxy

 Hero role
— HeroClientProxy

 What about Invoker?

— One big invoker?
— Invoker for each role?

CS@AU

«interface»
Role

_\"‘-‘L?

Client side

method(a,b c)

Server side

ClientProxy

method(a,bc)

/ marshalls call

Requestor

reguest(location, objectid,
operationld, arguments)

‘.

\

".

\

\‘\M‘ sends on network

send(address, byte[]) ‘

e
\\
¥ IPC
Library

Henrik Baerbak Christensen

Domain

IPC

ClientRequestHandler ‘

arshall

method(a,b,c)

7

. /
\\ . /!
N ;
b\ |4

Demarshalls and
dispatchs call

ing
Invoker

handleRequest(byte[])
A

7l
! =
/ receives on network

‘ ServerRequestHandler ‘

‘ byte[] receive() ‘

& :
IPC -
Library

39

VeV Broker 1.2

AARHUS UNIVERSITET
 We will make a stepping stone approach in this

exercise...

— Just like in the GameLobby system in the FRDS book, we will
make one big invoker (a ‘blob’ invoker).

— That is: there is only one invoker, and it handles method dispatch
for Game and Card and Hero

* This is “Make horrible sins and clean up later”

— (If you make it clean from the start (= separate invokers for each
type) you will run into problems in Broker Il exercises ®)

eV Hero and Card

AARHUS UNIVERSITET

« These interfaces’ methods all have value type return
values
— S0, you can develop them! And you are asked to...

* Process — similar as for game... Take small steps...
— Make a TestHeroBroker test class
— Make the broker chain as | did in @BeforeEach for Game

— Implement one method depth-first
» HeroClientProxy — then update the associated dispatch in Invoker

— Repeat until done

/v Example Hero

AARHUS UNIVERSITET
« Ala a @BeforeEach like

dBeforeEach

— The "blob’ invoker public void setup() {
Game servant = new DoubleGameForBroker();

Invoker invoker = new GameInvokerBrokerI(servant);
ClientRequestHandler crh =

new LocalMethodClientRequestHandler(invoker);

- A HerO SpeCifiC requestor = new StandardJSONRequestor(crh);
ClientPrOxy _’*hem = new HeroClientProxy(reguestor);
}

CS@AU Henrik Baerbak Christensen 42

/v Strings as Value Type

AARHUS UNIVERSITET

« What about String type? It is a Java class, not a primitive
t)/F)EB (:)_ public class StubCard implements Card {

publ'tNane{] { return "Siete"; }

« Treat String as a value type.

— We need the characters “Siete”, not a memory reference to that
string.

String name =

[) /ﬁ\g)zair], (:;S;()r] \A/ill r]Eir](jlea it_ reguestor.sendRequestAndAwaitReply(id,

QpecationNames CARD GET_NAME,

String.class);

CS@AU Henrik Baerbak Christensen 43

eV Hero and Card

AARHUS UNIVERSITET

« The key obstacle, however, is: What is the objectld?
— Which is the core learning goal of Broker Exercise II, next week

* For now Fake it till you make it... Scaffolding !
— Use a ‘fake |d’ |n the Cllent proxy public CardClientProxy(Requestor reguestor) {

+hic

coopocton — FEQUEEtDF}
id = "per‘.dir‘.g";-]

}

— And...

CS@AU Henrik Baerbak Christensen 44

/v

Fake Id in Invoker

AARHUS UNIVERSITET
. public class GameInvokerBrokerI implements Invoker {
« Cardis not a '
. @0verride
S'”gleton, there public String handleRequest(String reguest) {

are many of them! /- s

ReguestObject requestObject =

gson.fromJson(request, RequestObject.class);

Method encapsulates the String [objectId |= requestObject.getObjectId();
lookup. Presently it is fake-it

code, but next week can be
recoded to proper impl. // CARD &Rods
} else if (operatlame.startsWith(OperationNames.CARD_PREFIX)) {

// Lookup the right card to invoke the method on

Card servant =|lookupCard(objectId);

private Card fakeItCard = new StubCard();
private Card lookupCard(String objectId) { One Level OfAbStraCtion — uncle bOb

return fakeltCard;

}

CS@AU Henrik Baerbak Christensen 45

VeV Sidebar Exercise

AARHUS UNIVERSITET

 Why not pass Card as a value type?
— ltis just dumb data, right?
— Gson can marshall and demarshall it properly, right?

« Argue in favor of pass-by-reference and pass-by-value

* In the exercise, you must implement the ClientProxy
+ Invoker pairs for both Card and Hero
— Which is ‘pass-by-reference’...

/v Cost of the Fakelt code

AARHUS UNIVERSITET

* Next week, you will actually have to modify your Invoker
quite a bit — split them, replace fake-it lookup...

— Take small steps, sometimes goes via code that needs to be
removed again once we get to the
final stages of the development.

— Scaffolding is common in
other engineering disciplines ©

CS@AU Henrik Baerbak Christensen 47

/v

AARHUS UNIVERSITET

Broker 1.3

The Client and Server programs
Manual integration test

eV The Main Methods

AARHUS UNIVERSITET

« TDD and Doubles will get all the core code in place.
« Still, we need applications to run a distributed system

— HotStoneServer’'s main method
— HotStoneClient’s main method

* Provided code provides both

// === Distributed HotStone - executing targets

task hotstoneServer(type: JavaExec) {
group 'SWEA Distribution'
description 'Run HotStone server'

mainClass = 'hotstone.broker.main.HotStoneServer!'
classpath = sourceSets.main.runtimeClasspath
}

task hotstoneStorytest(type: JavaExec) {
group 'SWEA Distribution'
description 'Run a HotStone Story as a MANUAL TEST client '

mainClass = 'hotstone.broker.main.HotStoneStoryTest'
classpath = sourceSets.main.runtimeClasspath
args host

CS@AU Henrik Baerbak Christensen

hotstone
broker
client
common
doubles

main
&' HotStoneServer
£ HotStoneStoryTest

49

/v Manual Integration Test

AARHUS UNIVERSITET

 We can build a proper server setup already this week!

 Why?
— There is only one Servant game
* Create ‘servant’

* Couple the invoker to it

* Couple a UriTunnelSRH to it
— Listen to HTTP requests from client

« And then we are done...
— (Change the servant to your code!)
— (The servant is not complete, but

will be next week.) public HotSton

int port = Brok

Game servant

CS@AU Henrik Baerbak

~

Server side

method(a,b,c)

<
i

a Demarshalls and
dispatchs call

Invoker

handleRequest(byte[])

/ receives on network

‘ ServerRequestHandler ‘

‘ byte[] receive() ‘

o ace» |
ole L
Client side methbdi(a,b.)
ClientProx: |
y Domain
method(a,b,c)
/ marshalls call
Requestor Marshalling
request(location, objectld,
operationld, arguments)
.\\. ’ﬂ
Y
‘N‘ sends on network
ClientRequestHandler ‘ IPC
send(address, byte[]) ‘
\\
T
Library

rver() {

o

A
IPC I
Library

J

onstants. HOTSTONE_PORT;

| -

new StubGameForBroker();

50

/v

AARHUS UNIVERSITET

 But we cannot build a full-blown client

 Why?
— Game only partially done ®

— The Hero and Card Invokers are
not coupled to the Game Invoker

— Thus a MiniDraw GUI will fail !

« But, we can test the simple
Game methods

* A manual integration test

Manual Integration Test

Client side

Server side

ClientProxy

method(a,b,c)

-

/ marshalls call

Requestor

request(location, objectld,

operationld, arguments)
Y

\
‘N‘ sends on network

ClientRequestHandler

method(a,b,c)
=

/ Demarshalls and
dispatchs call

Invoker

handleRequest(byte[])
/
/ receives on network

ServerRequestHandler ‘

send(address, byte[])

N
o IPC
Library

byte[] receive() ‘

/

A
IPC I
Library

— Call a few simple Game methods over real HTTP network
» And verify that server receives them and returns proper results...

CS@AU

Henrik Baerbak Christensen

51

/v

AARHUS UNIVERSITET
« Start server using Gradle

[~ 'esdev@small22: —/proj/frsproject/hotstone-broker-start

e Orin Intellid

CS@AU

Server Side

csdev@small22: ~/proj
$ gradle hotstoneServer]j

i T h o 1 " e Ratalelatalil e it atsl o L+ C+ o C
il il L e mL

® Show Context Actions

1n the HTTP variaont running on p [Paste
' Copy / Paste Special
public class HotStoneServer { Column Selection Mode
ublic static vold main(Strin .
. (al] Find Usages
new HotStoneServer(); Refactor
}
Folding
Analyze

public HotStoneServer() {
int port = BrokerConstants.HOTE Go To
'/ Define the server side root Generate...

A LU

Game servant = new StuhGameFurl[» Run 'HotStoneServer.main()'

£ Debug 'HotStoneServer.main()'

Henrik Baerbak Christensen

Alt+Enter
ctri+v
2

Alt+Shift+Insert

Alt+F7
&

>
*

?
Alt+Insert

Ctrl+Shift+F10

52

Y o Server Running...

AARHUS UNIVERSITET

« The server uses a Logging framework (SLF4J) to provide
server side info — a life saver in case of trouble...

csdev@small22: ~/proj/frsproject/hotstone-broker-start 164x10
-18T12:39:21.848+02:00 [INFO] org.ec . .server.Server :: jetty-9.4.31.v20200723; built: 2020-07-23T17:57:36.8127Z; git: 450ba27947el3eb66ba

org.ec . .server.session :: DefaultSessionIdManager workerName=node®
org.ec . .server.session :: No SessionScavenger set, using defaults
org.ec . .server.session :: node@ Sc nging every 660000ms
org.ec . .server.AbstractConnector :: Started ServerConnector@7d87c@5c{HTTP/1.1, (http/1.1)}{0.0.0.0:5555}
139:21. 0 [INFO] org.ec . .server.Server :: Started @248ms
3 ----> 75% EXECUTING [6s]
> :hotstoneServer

« (Controlled by the ‘log4j.properties’ file in the
src/main/resources folder, outside the scope of exercise)

CS@AU Henrik Baerbak Christensen 53

VeV Client Side

AARHUS UNIVERSITET
o Start Cllent story test usmg Gradle

:_sdew\gasmallzz. F—;prc:j;"frsprc:je::t;"hc:tstc:ne—brc:ker—start 101x23
% gradle hotstoneStorytest

Starting a Gradle Daemon, 1 busy and 2 stopped Daemons could not be reused, use

> Task :hotstoneStorytest

=== Testing pass-by-value methods of Game ===
--=> Game turnNumber 312
--= Game winner PEDDERSEN

=== [FTn] ===

task hotstoneStorytest(type: Javakxec) {
group 'SWEA Distribution'
description 'Run a HotStone Story as a MANUAL TEST client'’
DL (e ol Ll e 'hotstone.broker.main.HotStoneStoryTest'
rlacenath - gsgurceSets.main.runtimeClasspath

given specifically by a
: args host

host = localhost

ALl L15 Git:e22-t

CS@AU Henrik Baerbak Christensen 54

4

AARHUS UNIVERSITET
 From Intellid, you also need to give that parameter

CS@AU

Client Side

= "Run/Debug Configurations

+ - EBHK

w Application
HotStoneStoryTest

> 4F JUnit Build and run

Name: HotStoneStoryTest

java 17 SDK of 'hotstone-broke - -cp

hotstone.broker.main.HotStoneStoryTest

localhost

public class HotStoneStoryTest { ® Show Context Actions Alt+Enter

public static void main(String[] args) [l paste Ctrl+V

[/ Get of the host from the Copy / Paste Special 5

String hest = args[e]; Column Selection Mode Alt+Shift+Insert
J/oand e: the story test, taolki

new HotStoneStoryTest(host); Refactor 3

+ Folding >

Analyze >

public HotStoneStoryTest(String host) Go To 3

/{ Crea the client side Broker rgl Ce— Alt+Insert

UriTunnelClientRequestHandler clignt

new UriTunnelClientRequ

Ctrl+Shift+F10

P Run 'HotStoneStoryT....main()"

Henrik Baerbak Christensen 55

VeV Client Code

AARHUS UNIVERSITET
« Passing host parameter to the main method...

public class HotStoneStoryTest {
public static void main(Stringl] args)

String host = args[8];

new HotStoneStoryTes{(host);
¥

public HotStoneStoryTest(String host) ﬂ

ra ko nT 5 ot 0

UriTunnelClientRequestHandler clientRequestHandler
= new UPiTunnelClientRequestHandle{(hust;lBrukerCunstants.HDTSTDHE_PDRT;
useTLS: false, BrokerConstants.HOTSTONE_TUNNEL_FPATH);

CS@AU Henrik Baerbak Christensen 56

e Manual Test method

AARHUS UNIVERSITET
« Let the client just exercise a scenario/remote calls

private void testSimpleMethods(Game game) {

System.out.println("=== Testing pass-by-valuve methods of Game ===");

System.ouvt.println(" --> Game turnNumber + game.getTurnNumber());

System.ouvt.println(" --> Game winner + game.getWinner());

TODD - aodd calls to the rest of the implemented methods

csdevi@small22: ~/proj/frsproject/hotstone-broker-start 101x23
: % gradle hotstoneStorytest
Starting a Gradle Daemon, 1 busy and 2 stopped Daemons could not be reused, use

> Task :hotstoneStorytest
= Testing pass-by-value methods of Game ===
--> Game turnNumber 212
--> Game winner PEDDERSEN

rsionIdentity":1}, responseTime ms=1
-10-18T12 =381 02:00 [INFO] frds.broker.ipc.http.UriTunnelServerRequestHandler :: method=P0OST, context=request, request={"operationName":"game get-turn-r
'payloa Id":"one-game", "versionIdentity":1}
0-18T12:47:38.358+02:00 [INFO] frds.broker.ipc.http.UriTunnelServerRequestHandler :: method=handleRequest, context=reply, reply={"payload":"312","statusCods
"versionIdentity":1}, responseTime_ms=1
2022-10-18T12 :38.373+02:00 [INFO] frds.broker.ipc.http.UriTunnelServerRequestHandler :: method=POST, context=request, request={"operationName":"game get-winne
"payload":"[]","objectId":"one-game", "versionldentity":1}
2022-10-18T12 8.373+02:00 [INFO] frds.broker.ipc.http.UriTunnelServerRequestHandler :: method=handleRequest, context=reply, reply={"payl ":"\"PEDDERSEN\"","
atusCode" :200, sionIdentity":1}, responseTime_ms=0
< ----> 75% EXECUTING [17m 42s]
> thotstoneServer

/v

AARHUS UNIVERSITET
Development Patterns for Iteration 9+10

Setup the Broker Chain first
Use Test Doubles for Game and IPC

Print now and remove later

— Print to System.out to trace flow, remove when shit works

Develop each method depth-first

— Make proxy method for method x, see proper output from print, next
iteration make invoker code, done...

Henrik Baerbak Christensen

/v

AARHUS UNIVERSITET

Conclusion...

Happy Coding!

